

VIRTUAL MUSCADINE CONFERENCE 2021

Evaluation of Cane vs. Spur Pruning in Razzmatazz Mark Hoffmann – NC State University

Ervin Lineberger

Killdeer Farms, Kings Mountain, NC

January 27, 1940 – January 3, 2021

- We had two trials at Killdeer Farms in 2019/20
- Unfortunately, due to severe cold damage, we only could collect data on one trail: Evaluation of Cane vs. Spur Pruning in Razzmatazz

• Cordon/Spur on mature Razzmatazz. 100buds/vine

• Head/Cane on mature Razzmatazz. 100buds/vine

Cordon/Cane

Data from 2019/2020

- please keep in mind: Cold Damage has caused severe die-off (40% of plants were lost in the trail, and many were damaged)
- We re-established the trails at Union Grove Farms in Chapel Hill

Treatment	Yield	Berry Wght	Cluster Wght	Brix
	(g/vn)	(g)	(g)	(TSS)
Cordon/Spur	429b	0.81b	22.75b	17.6ns

Trials this year

- Re-established pruning trails at Union Grove Farms in Chapel Hill
- Established flower removal trial at Union Grove Farms in Chapel Hill

mark.hoffmann@ncsu.edu

Penelope Perkins-Veazie

- Penelope_perkins@ncsu.edu
- Professor, North Carolina State University
- Postharvest Physiology, Fruits and Vegetables, mostly cucurbits, tomatoes, and berries (strawberry, blackberry, blueberry, raspberry, grapes)

VIRTUAL MUSCADINE CONFERENCE 2021

Fresh market storage life of seeded and seedless grape storage life and pigments

Penelope Perkins-Veazie North Carolina State University

Project Plan

- Obtained commercially grown, cooled fruit
- Transported about 1 h to Kannapolis
- Stored at 3 C for 21-28 days
- Types: Bronze (3 seedless, 4 seeded)
 Purple (1 seedless, 4 seeded)
- Rated for mold, leak, wrinkle, scar tear
- Composition (Brix, acidity, pH)
- Anthocyanin and phenolic profiles


Fresh Market Varieties used

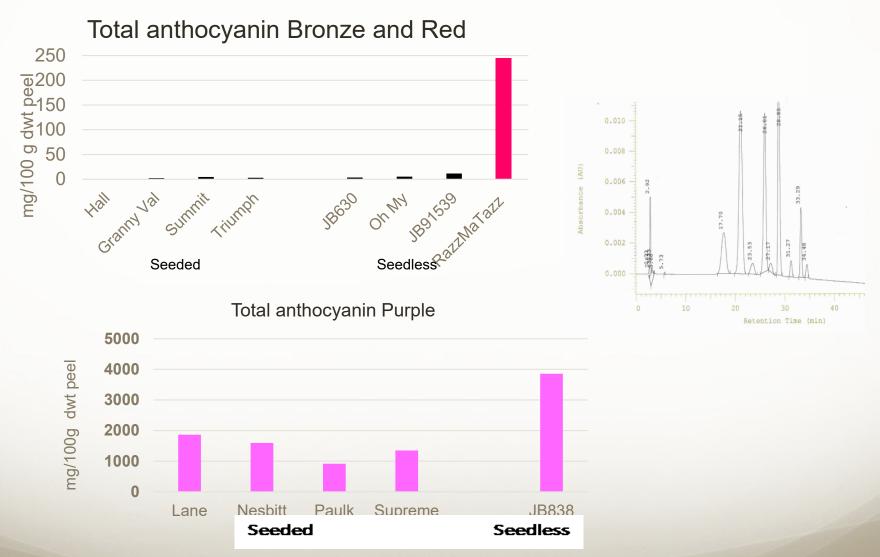
<u>Seedless</u>		<u>Seeded</u>		
	Bronze			
Oh My		Triumph		
JB 06-30-02		Granny Val		
JB 09-15-3-9		Hall		
		Summit		
	Purple			
	(not used in			
JB0 8-38-1-10	storage)	Lane		
		Paulk		
RazzMaTazz (rec	1)	Supreme		
		Nesbitt		

All grapes grown, packed, cooled at Kildeer Farm, Cherryville NC

Storage index (based on no. mold, leak, soft grapes)

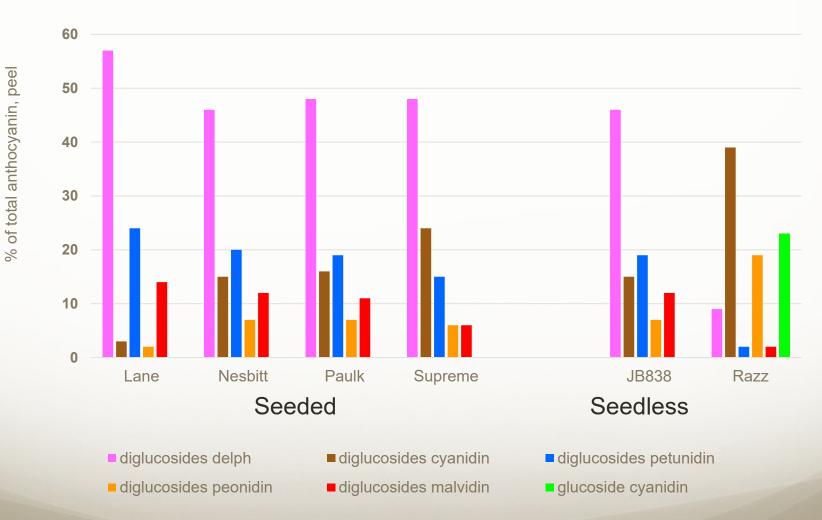
Storage Index (>40 is better)

%Soft grapes after storage at 37 F for 21-42 days

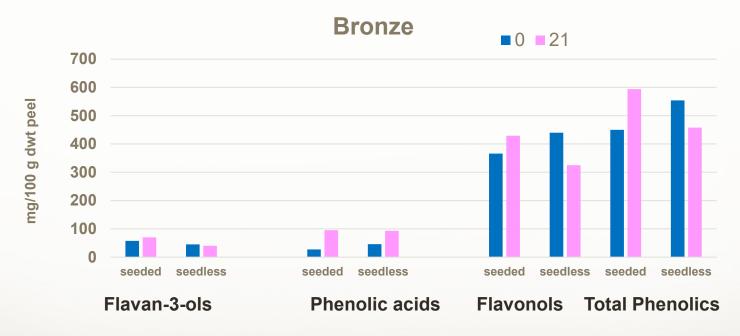


% Soft grapes (want to keep below 20%)

Phenolics, anthocyanins etc

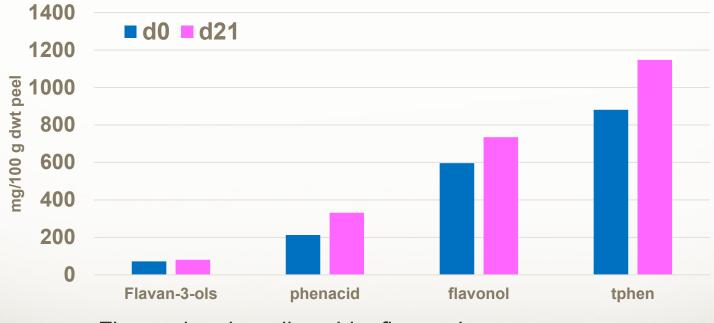


Anthocyanins


Pigment profiles

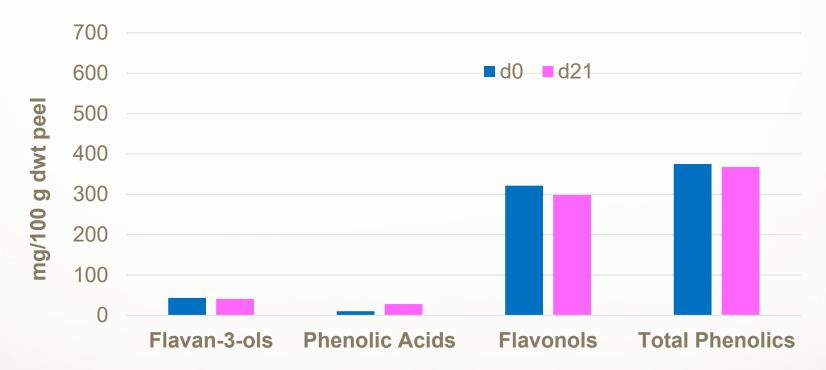
Anthocyanin in purple or red muscadine

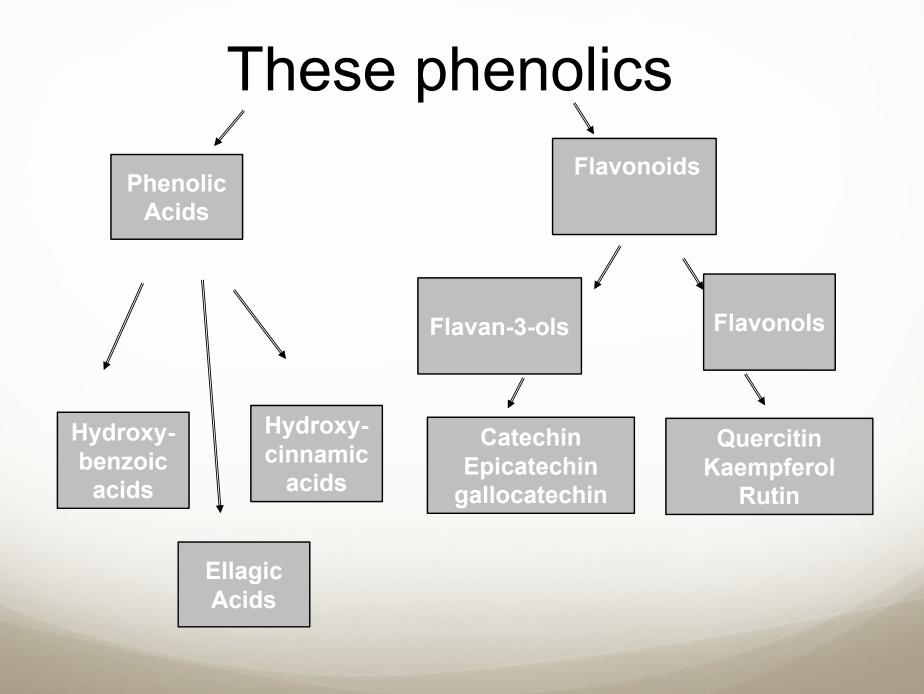
Phenolics (non-anthocyanin)


Seeded vs Seedless

Flavonols highest; seeded and seedless similar

Phenolics (non-anthocyanin)


Purple grapes



Flavonols>phenolic acids>flavanols

Seedless (JB0838110) similar to seeded values

RazzMaTazz (red seedless)

Summary

- Several fresh market cultivars had low mold after 21-28, even 42 days
- Softness 20-50%, wrinkle a problem on tiny Razz
- Weight loss 1-2%
- Brix was 15 to 18%, titratable acidity 0.3 to 0.7%

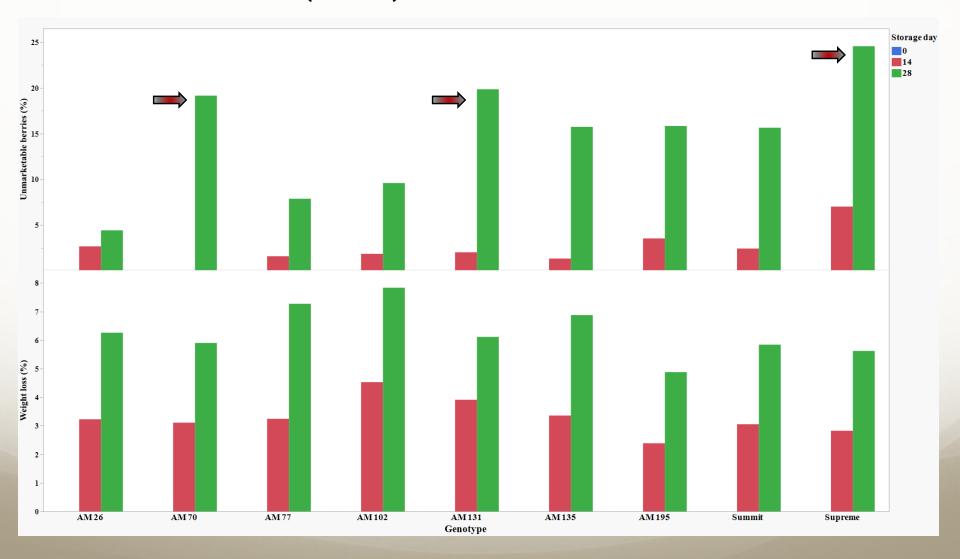
Summary

- Phenolics increased in peel after storage, primarily the flavonols
- Anthocyanin pigments and phenolics not very different between seeded and seedless peel
- Diglucoside pigments dominated in both seeded, seedless.
- A few monoglucoside pigments found in seedless, especially in RazzMaTazz

VIRTUAL MUSCADINE CONFERENCE 2021

Evaluating Harvest and Postharvest Potential of Fresh-market Muscadine Grapes Grown in Arkansas

Dr. Renee Threlfall, Dr. Margaret Worthington, and Cody Rawls University of Arkansas System Division of Agriculture (UA System)


Project Plan

- Harvest and postharvest attributes of muscadine genotypes (cultivars and selections) grown in Arkansas evaluated at the UA System
- Nine muscadine genotypes (AM-26, AM-70, AM-77, AM-102, AM-131, AM-135, AM-195, Summit, and Supreme) hand harvested in 2020 from UA System Fruit Research Station, Clarksville
- 1.8 kg of each genotype harvested into clamshells, placed in ice chests, and transported to the UA System Food Science Department, Fayetteville
- Harvest attributes evaluated
 - Physical attributes (berry weight, seed number, stem scar tear, and berry firmness) and composition attributes (soluble solids, pH, titratable acidity, and soluble solids/titratable acidity ratio)
- Postharvest attributes evaluated
 - Weight loss and unmarketable berries at 0, 14, and 28 d at 2°C

Physical and composition attributes of muscadine grapes at harvest, Clarksville AR (2020)

	Berry		Stem	Berry	Soluble		Titratable	Soluble
	weight	Seed	scar tear	firmness	solids		acidity	solids/titratable
Genotype ^z	(g)	number	(%)	(N)	(%)	pН	(%) ^y	acidity ratio
AM 26	9.47 b	3.00 a	0.00 d	9.66 ab	11.77 ef	3.45 bc	0.57 de	20.79 bcd
AM 70	<mark>12.50 a</mark>	3.33 a 💻	13.99 b	8.90 abc	14.50 bcd	3.49 b	0.43 e	<mark>35.17 a</mark>
AM 77	<u>4.76 c</u>	4.00 a	0.78 d	7.54 cd	11.37 f	<mark>2.81 f</mark>	<mark>1.06 a</mark>	10.75 d
AM 102	6.15 c	2.33 a	1.85 d	8.43 bcd	16.80 ab	3.18 e	0.67d	24.90 abc
AM 131	8.79 b	3.67 a 💻	15.34 b	9.52 ab	16.13 abc	3.27 cde	0.96 ab	16.83 cd
AM 135	8.76 b	3.33 a	3.18 cd	6.53 d	13.33 def	3.37 b-e	0.70 cd	18.91 bcd
AM 195	10.17 b	3.00 a	9.53 bc	8.74 bc	14.67 bcd	<mark>3.80 a</mark>	0.72 cd	20.44 bcd
Summit	8.48 b	2.67 a	3.77 cd	<mark>10.75 a</mark>	14.07 cde	3.21 de	0.85 bc	16.53 cd
Supreme	10.17	2.67 a 💻	<mark>30.61 a</mark>	9.53 ab	<mark>17.43 a</mark>	3.41 bcd	0.60 d	29.60 ab
P-value	< 0.0001	0.1277	< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001

² Genotypes were evaluated in triplicate. Means highlighted are highest value and means underlined are lowest. Means with different letters for each attribute are significantly different (p<0.05) using Tukey's Honestly Significant Difference test. ^y Titratable acidity expressed as % citric acid. Marketability attributes of muscadine grapes during storage at 2°C (0, 14, and 28 days), Clarksville AR (2020)

Conclusions and Future Plans

The outcomes from this research demonstrate the potential for muscadines as a fresh-market crop.

- Good physical and composition attributes
 - Need to address stem scar tear
- Storage potential for up to 28 days at 2°C
 - Low weight loss during storage
 - Low number of unmarketability berries during storage

Project in Arkansas will be repeated in 2021.

VIRTUAL MUSCADINE CONFERENCE 2021

UPDATE ON SEEDLESS MUSCADINE BREEDING

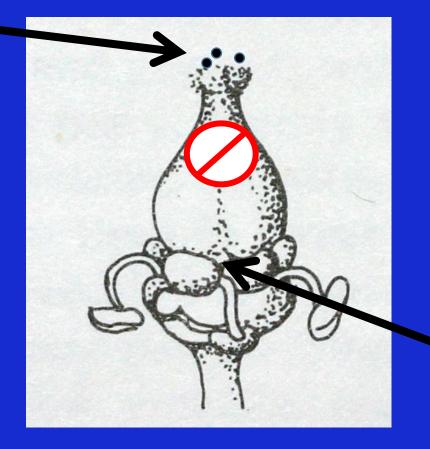
Jeff Bloodworth March 2, 2021

Bunch Grapes

Quality

- Table Grapes
 - Seedlessness, Large Cluster, Crisp Texture
- European Style Wine

Muscadine Grapes


Fitness

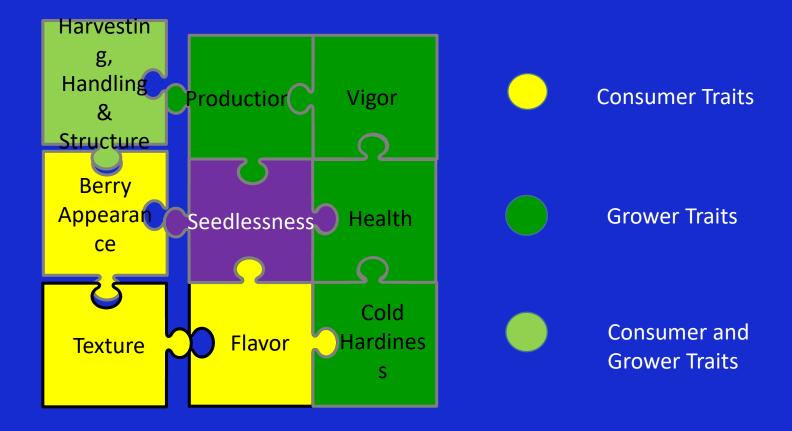
- Disease Resistance
- Adaptability

The Muscadine Block

Seedless Bunch Pollen

Muscadine Egg

38 CHROMOSOMES



F1 HYBRID 39 CHROMOSOMES

40 CHROMOSOMES

First Perfect Flowered Productive Seedless Muscadine Backcross

H1 Flower Cluster

H1 Cluster

Larger Berry Size in Seedless Selections

RazzMatazz Cluster Sizes

Selections From Wasco, CA

Oh My! Original Vine (14th leaf)

E4-12

E4-12

E4-12

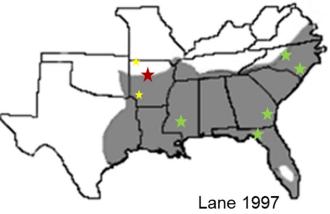
Jeff Bloodworth Garden's Alive! 919.323.7345 grapjb@gmail.com

VIRTUAL MUSCADINE CONFERENCE 2021

Breeding Seedless Muscadine Grapes at the University of Arkansas Margaret Worthington mlworthi@uark.edu

Arkansas Fruit Breeding

- Established in 1964 by Arkansas native Dr. Jim Moore
- Active programs in blackberries, peaches, bunch grapes, muscadines
- 121 total cultivar releases
- Muscadine program established in 2007 by John Clark
- I started in 2016 and assumed leadership of the muscadine program in 2019



Prime-Ark® Primocane-Fruiting Blackberries

Muscadine Breeding Program

- Over 19,000 seedlings planted
- 300 selections made
- A group of advanced selections moving along
 - Replicated trials
 - NCPN virus indexing
- Breeding objectives:
 - Cold hardiness & adaptation
 - Improved texture
 - Unique flavors
 - Dry scar / postharvest
 - Etc...

Seedless Crossing & Selections

- Breeding agreement with Gardens Alive! signed in 2017
- Crosses with Bloodworth seedless material in 2017-2020
- First seedless selection (AM-270S) made in 2020!
- 8 successful seedless crosses in 2020 and 3765 seeds currently germinating in the greenhouse

Plans for the Future

- Continue to establish best Bloodworth selections in Clarksville for crossing and evaluation
- Select for adaptation to Arkansas/NC environment
- Release of seedless materials in collaboration with Gardens Alive! in the next 5-10 years

