WEBINAR (August 4 2020, 9:30-11:30am) Grape Harvest Workshop 2020

Organization: Patti Friszolowski NC Winegrower Associatio

Host: Mark Hoffmann

NC STATE UNIVERSITY

Panelists:

Michael Jones, Scott Labs Michael Jones, Scott Labs Mark Hoffmann, Small Fruits Extension Specialist, NC State University David Bower, Enology Instructor, Surry Community College

NC STATE UNIVERSITY

Agenda

- Review of protocols associated with yeast rehydration and preparation for juice inoculation. Michael Jones, Scott Labs
- Discussion on the required juice nutrient level to ensure healthy and clean fermentation. Megan Hereford, Scott Labs
- Expectations and crop level for the 2020 Harvest season Mark Hoffmann, NC State
- Prepare your lab for harvest. David Bower, Surry

Rules

- Q+A:
 Please write your questions into the Q+A box
 We try to address all questions during and after a presentation. There will be enough time for Q+As after each presentation.
- Mark and Patti will monitor questions and will make sure that we won't miss any.

Conline 4 Webinar recording will be available on the Grape Portal: .https://grapes.ces.ncsu.edu Enjoy the webinar @

2

<text><text><text><text><text>

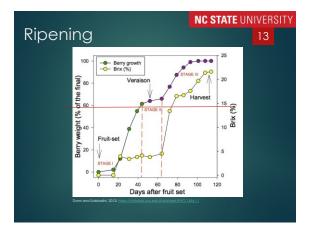
-				
•	 	 	 	

Why is it important?

After the frost, we have various situations, often in the same vineyard: Vines might have even ripening, but highly variable number of clusters in a block

Veath	ner Ch	ange		STATE UNIVERSI	ΤY
Year		oril		ay	
	Days below 41 °F	Days above 0.15 in.	Days below 41 °F	Days above 0.15 in.	
2005	4	0	1	0	
2006	3	0	0	0	
2007	5*	0	0	0	
2008	4	0	0	0	
2009	2	0	0	0	
2010	3	0	0	0	
2011	2	0	0	0	
2012	5	0	0	0	
2013	7	0	1	0	
2014	4	4	0	2	
2015	2	5	0	4	
2016	6	6	0	8	
2017	1	4	0	9	
2018	6	6	0	10	
2019	3	8	0	3	
2020	5	10	2	8	

NC STATE UNIVERSITY What are the main problems?


- Primary and secondary clusters

- Uneven ripening
 Uneven cluster/vine distribution
 Estimated cluster weights might be off

NC STATE UNIVERSITY Crop Estimate Methods

Big questions in 2020:

- What do I harvest?
- How do I assess a representative number of clusters/vine for one block?
- Will the clusters we harvest this year have similar weights to last year?

NC STATE UNIVERSITY Crop Estimate Methods 14 • Harvest Cluster Weight Method (HCW) • Lag-Phase Method

NC STATE UNIVERSITY

Crop Estimate Methods

HCW and Lag-Phase

- Number of bearing and non-bearing vines per acre
- Number of clusters per vine

Difference:

- Lag-phase: Cluster weight THIS season
- HCW: Based on cluster weights from LAST seasons.

NC STATE UNIVERSITY

Harvest Cluster Weight

Predicted Yield (tons per acre) = (#Vine: x #Clusters/vine x Multi-year Cluster Weight (lbs)) / 2000

- For each cultivar
- This year: Uniformity of age and vine size. Smaller blocks, based on uniformity of damage/loss

Crop Estimate Methods 17

If ripening is uneven

• Harvest or not harvest? Only count the clusters you will harvest!

If ripening is delayed

- Harvest could be delayed (late cultivars could go into late October this year)
- Wine-style decisions?

Number of vines

•	Number	of	vines	ner	acre
	1901110EL	UI.	11162	hei	ucie

Row/Vine	4ft	5ft	6ft
9ft	1210	968	807
10ft	1098	871	726
11ft	990	792	660

Count all dead/diseased vines

- Additionally count all vines that are not being harvested or not bearing!
- 726 vines/acre. 5% are dead, 25% are non-bearing or won't be harvested: 508 bearing vines

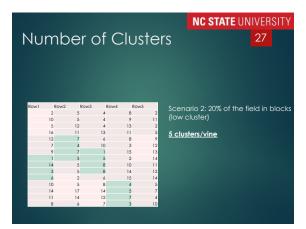
Number of Clusters

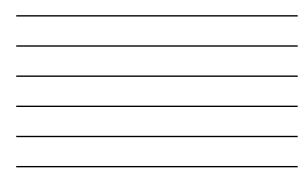
NC STATE UNIVERSITY
24

NC STATE UNIVERSITY

23

Real world example: 'Merlot', Research plot, grower estimated 75% crop loss to a normal year.


NC STATE UNIVERSITY Number of Clusters


Real world example: 'Merlot', Research plot, uninform age and uniform size; Grower estimated 75% crop loss to a normal year, even ripening VSP, block was pruned to 2 buds per spur, and shoot thinned to 12 shoots per vine (24 buds per vine).

2020: 8 clusters/vine		Row5	Row4	Row3	Row2	Row1
	2	8			5	2
r average: 29 clusters/vin	11	9			5	10
op loss	2	13			12	5
	5	11		1	11	16
	9	8			7	12
	12	3)	1	4	7
	13	15			7	9
	14	2			3	1
	11	10			5	14
	12	14			5	3
	14	15			2	6
	5	4			5	10
	7	5		1	17	14
	4	7		1	14	11
	10	3			6	8

Nur	nb	er d	of C	lust	ers		26
Row1	Row2	Row3	Row4	Row5	Scen	ario 1: 20% of the fi	eld in blocks
	2	5	4	8	2 //= ! = /=		eiu in biocks
	10	5	4	9	11 (nign	cluster)	
	5	12	4	13	2		
	16	11	13	11	5 10 cl	usters/vine	
	12	7	6	8	9		
	7	4	10	3	12		
	9	7	5	15	13		
	14	5	8	10	14		
	3	5	8	14	12		
	6	2	6	15	14		
	10	5	8	4	5		
	14	17	14	5	7		
	11	14	12	7	4		
	8	6	7	3	10		

۷u	mk	oer (of C	Clust	ters	NC STATE UNIVERSITY 28
Row1	Row2	Row3	Row4	Row5	S	Scenario 3: 20% of the field in blocks
	2	5	4	8	11 (low + high cluster)
	5	12	4	13	2	
	16	11	13	11		7.6 clusters/vine
	12	7	6	8	9 4	1.6 Clusiers/ ville
	7	4	10	3	12	
	9	7	1	15	13	
	1	3	5	2	14	
	14	5	8	10	11	
	3	5	8	14	12	
		2	6	15	14	
	10		0			
	10	5	8	4	5	
	10 14	5 17 14	8 14 12	4 5 7	5 7 4	

NC STATE UNIVERSITY Number of Clusters 29 Real world example: 'Merlot', Research plot, uninform age and uniform size; Grower estimated 75% crop loss to a normal year, even ripening Scenario 4: 5% of the field (low + high) clusters Row2 Row3 Row4 Row5 12 11 13 11 8.25 clusters/vine 13 16 12 3 15 10

14

Number of Clusters

17

NC STATE UNIVERSITY 30

Real world example: 'Merlot', Research plot, uninform age and uniform size; Grower estimated 75% crop loss to a normal year, even ripening

Row1	Row2	Row3	Row4	Row5
1	5	4	8	2
10	5	4	9	11
5	12	4	13	2
18	11	13	11	5
12	7	6	8	9
7	4	10	3	12
5		1	15	13
1	3	5	2	14
14	5	8	10	11
3	5	8	14	12
e	2	6	15	14
10	5	8	4	5
14	17	14	5	7
11	14	12	7	4
8	6	7	3	10

Scenario 5: 5% of the field (low + high) clusters

9.5 clusters/vine

1	r	۱
т	L	,
	_	

Number of Clusters

NC STATE UNIVERSITY

- This year every block can be different, even in the same cultivar
- Create meaningful blocks, that reflect a similar pattern at the majority of the vines
- In those blocks, you can assess Number of Clusters by assessing equally the whole bandwidth of cluster bearing vines (the more vines, the more accurate; We recommend more than the usual 4-5%)

NC STATE UNIVERSITY

32

HCW: Cluster Weights

Cluster Weights:

The most variable parameter in crop estimation, highly influenced by weather.

• Use long-term average for this cultivar

• In our case: 0.4 lbs/cluster

508 bearing vines

- 8 clusters/vine
- 0.4 lbs/cluster


NC STATE UNIVERSITY Harvest Cluster Weight 33

Predicted Yield (tons per acre) = (#Vines x #Clusters/vine x Cluster Weight (lbs)) / 2000

Predicted Yield (tons per acre) = (508 vines x 8 clusters/vine x 0.4lbs) / 2000 = 0.81 tons per acre

Predicted Yield (tons per acre) = (690 vines x 29 clusters/vine x 0.4lbs) / 2000 = 4 tons per acre = estimated 80% loss

NC STATE UNIVERSITY Lag-phase determination (#Vines x #Clusters/vine x Cluster Weight (lbs)) / 2000 -- Pinot gris -- Cabernet franc 09/01 08/01

NC STATE UNIVERSITY Lag-phase determination not trivial

- Lag-phase (L) describes the period in which there is little increase in mass/volume of a berry
- It is the asymptotic deceleration of berry growth, separating the initial phase of rapid growth after anthesis and the second phase of fruit maturation.

NC STATE UNIVERSITY

Lag-phase determination not trivial

- Sample fruit before second period of growth starts
- Green berries at the cusp of softening
- Seeds are hardening (test with knife)
 Not all berries on a cluster ripe at the same time!!!
- If you have reached L phase: harvest representative number of clusters and weigh the cluster (lot of labor)
- Example: Clusters at L phase were 0.16 lbs

NC STATE UNIVERSITY

Lag-phase determination not trivial

- Example: Clusters at L phase were 0.18 lbs
- Estimated Cluster Weight: 0.18 lbs * 2 = 0.36 lb

Predicted Yield (tons per acre) =

(508 vines x 8 clusters/vine x 0.36lbs) / 2000

= 0.73 tons per acre

Results

NC STATE UNIVERSITY

- ▶ HCW method: 0.81 tons/acre were estimated
- L phase: 0.73 tons/acre were estimated
- HCW depends on history of accurate yield data
- L phase depends on experience and labor availability

Conclusions

- Divide your vineyard in meaningful blocks, by cultivar and observed fruiting habit
- Subtract the number vines that won't be harvested from your total vine counts
- Increase number of vines that you will count for clusters.
- Include high and low cluster count vines
- Expect to be more off with your estimates than in a usual year.

Thank you	NC STATE UNIVERSITY 40
Q+A	