Factors that impact the ripening process and berry composition in wine grapes in NC

Mark Hoffmann NCSU, Department of Horticultural Science <u>mark.hoffmann@ncsu.edu</u> 919-352-8006

- How to take a grape sample?
- Environmental factors and effects on ripening
- Cultural manipulation and effects on repining in North Carolina.
- Impact of diseases and potential effects on ripening

Or in other words: When is it time to harvest?

Definitions:

<u>Physiological maturity:</u> When seeds are able to germinate (usually immediately after veraison)

<u>Ripening:</u> The process between veraison and harvest

<u>Technical maturity ('Grape Maturity')</u>: Set of parameters set by the grower/winemaker

Sources:

Edward (Ed) Hellman (Texas A&T), 2004: How to judge grape ripeness before harvest.

http://agrilife.org/winegrapes/files/2015/11/ripening.pdf

Imed Demi (Ohio State), 2014: Determining Grape Maturity and Fruit Sampling

https://ohioline.osu.edu/factsheet/HYG-1436

No set of numbers <u>alone</u> will be able to tell you when your grapes have reached maturity.

Ripeness is a <u>function</u> of the intended use of the grape (sparkling vs. still wine?) and a man-made definition, which means: variable!

"Varietal character". Sensory assessment is important!

Sugar, acid, pH, tannins, phenolics, color compounds etc: **are an <u>AID</u> to decide on maturity**

Keep always in mind:

The vine has the aim to develop a grape than can spread seed

Monitoring fruit maturity is extremely important

- Collect large enough and random sample that is truly representative to the block intended to harvest.
- Fruit composition can be <u>very different even in one cluster</u>
- <u>Position of cluster on shoot can influence maturity</u>. Basal clusters often develop a little earlier
- Canopy management!!! (later more)

First step:

Developing sampling scheme

- Never sample at end of rows. Leave min. of 3 vines between end of row and your first sample.
- Sample in a grid system or in block systems (two rows can be one block)
- 'Representative' means considering your vineyard situation.
- Sample from shaded and exposed location in the canopy!
- Sample from different heights of the vine
- (can be berries or whole clusters)

Cluster samples are usually closer to reality than berry samples

Typical cluster sample (for 5 acres or less): 25 clusters

- Samples should be taken weekly, about three weeks before harvest is anticipated.
- Process samples within a few hours
- Crush all berries in a cluster
- Don't use only free run juice! Press thoroughly. Good measure:
 300 ml juice/lbs of fruit
- Red varieties: crush, destem and mascerate for 1-2 hours before pressing

- Store juice sample in sealed, full container and allow to settle
- Sulfur dioxide (25mg/L), ascorbic acid helps to delay browing
- Pectolytic enzyme can be added to enhance juice clarity
- Settled and clear juice is ready to be analyzed!

- Analyze samples for Brix, pH and TA. Perform sensory analysis!!!
- Samples can be stored for 1-2 weeks in refrigerator (compare to follow-up samples).
- Crushing and pressing juice samples is more accurate than tasting berries in the field
- Juice should be evaluated for <u>aroma and flavor</u>, <u>acidity and taste</u> <u>balance</u>, and <u>color</u>!

Representative sampling scheme!!!

Fast processing

Crush AND Press

Slow down browning and clarify juice

Parameters AND sensory

Factors affecting ripening in North Carolina:

Weather

Salinas, CA 13.2 Inches/year Average temperatures between 50-70 F

NC STATE UNIVERSITY

15

Salinas, CA 13.2 Inches/year Average temperatures between 50-70 F

Winston-Salem, NC 45 Inches/year Average temperatures between 45-77 F

Winston-Salem, NC 45 Inches/year Average temperatures between 45-77 F

Too wet!

- NC STATE UNIVERSITY
- Berry quality benefits from mild to moderate water deficit !!!!
- Let's look at Brix!

Too wet!

• Why is this happening? (Research from Washington State)

IMPLICATIONS OF GRAPE BERRY WATER RELATIONS FOR VINEYARD MANAGEMENT

Growth stage	Physiological function	Berry response
Before ripening	Xylem supplies most of the water to berries.	Berry size is sensitive to soil water availability.
During ripening	Phloem supplies most of the water to berries. This is a time of rapid sugar accumulation.	Berry size is insensitive to soil water availability.
After maturation	No more phloem inflow and sugar accumulation.	Weight loss in berries can occur due to dehydration.

Too wet!

NC STATE UNIVERSITY

Contributes to berry growth before veraison Contributes to berry growth after veraison

Too wet!

- Early rainfall affects berry size more than thought
- After reaching maximum Brix, berries can lose about 5% weight for each degree increase in Brix

Problem: Weather in North Carolina very variable!

Dehydration techniques and short-term ozone-treatments might be suitable techniques for our climate to develop a more consistent wine quality every year.

Factors affecting ripening in North Carolina:

Leaf removal?

Cain Hickey Rachael White

Question: Will too much exposure lead to reduced anthocyanins here in the Southeast?

Or: Can we use leafremoval as an additional management tool for rots?

Hypotheses

- Leaf removal will increase total phenolics and anthocyanins
- Pre-bloom removal will reduce crop yield
- Leaf removal will reduce acidity

NC STATE

UNIVERSITY

Thurmond, NC \rightarrow Cabernet franc clone 214

Leaf removal effect on phenolics and anthocyanins in Cabernet franc.				
	Total estimated phenolics (a.u. / g berry)	Total estimated anthocyanins (mg / g berry)		
NO	84.60 b	0.58		
PB-6	<mark>100.00 a</mark>	0.63		
PFS-6	<mark>97.97 a</mark>	0.62		
Canopy side				
East	94.10	0.58 b		
West	94.26	<mark>0.63 a</mark>		

- NO = No leaf removal
- PB-6 = Removal of 6 leafs Pre Bloom
- PFS-6 = Removal of 6 leafs Post Fruit Set

NC STA

Thurmond, NC \rightarrow Cabernet franc clone 214

Leaf removal effect on primary juice chemistry in Cabernet franc.					
	Soluble solids (°Brix)	Titratable acidity (g/L)			
NO	22.9	3.66	3.77 a		
PB-6	23.1	3.70	3.71 ab		
PFS-6	22.5	3.61	<mark>3.50 b</mark>		

NC STATE

UNIVERSITY

Thurmond, NC \rightarrow Cabernet franc clone 214

Leaf removal effect on <i>Botrytis</i> in Cabernet franc.					
	Incidence (%)	Severity (%)	Estimated crop loss (%)		
NO	54.0 a	4.6	2.4		
PB-6	<mark>30.0 b</mark>	1.6	0.5		
PFS-6	<mark>10.0 c</mark>	0.1	0.0		

NC STATE

UNIVERSITY

NC STATE UNIVERSITY

Hypotheses, revisited

- Leaf removal will increase total phenolics and anthocyanins
 - Generally so

Leaf Removal

Actual research data

- Unremarkable canopy side effect
- Pre-bloom removal will reduce crop yield
 - Trends suggest yes, statistics = no.
- Leaf removal will reduce acidity
 - Yes, by a range of 0.2 to 0.9 g/L

UNIVERSITY OF GEORGIA EXTENSION

Thank you

- Jones von Drehle Vineyard and Winery
- Eric Steinbicker (Vineyard Manager)
- Rachael White (UGA)
- Annie Vogel (UGA)
- Abby Whitacker (NC Coop. Ext)

NC STATE

UNIVERSITY

Leaf Removal

Actual research data

- Karen Blaedow
- Cain Hickey

Question: How efficient is the use of automated leaf removal vs. hand leafremoval?

Or: Can we use leafremoval as an additional management tool for rots?

NC STATE UNIVERSITY

Hypothesis

Automated leaf removal will result in similar berry composition, disease incidence and yield as hand leaf removal

Leaf Removal

Actual research data

UNIVERSITY OF GEORGIA EXTENSION

Treatments (post-bloom fruit zone leaf removal):

- (1) Removal of 2 leafs opposite of clusters
- (2) Removal of 4 leafs
- (3) Removal of 6 leafs
- (4) Crew
- (5) Mechanical Leaf Removal
- (6) No Leaf removal (Control)

5 replicates, 4 vines per replicate. 2018 and 2019.

Merlot + Chardonnay

NC STATE

UNIVERSITY

NC STATE UNIVERSITY

Chardonnay 2018

Treatment	Berry weight (g)	Cluster #	Tons per acre	
2 Leaf removal	1.5	28.9	3.	2
4 Leaf removal	1.48	28.15	3.	2
6 Leaf removal	1.47	29.65	3.	3
Crew	1.45	32.9	3.	8
Mechanical	1.51	29.45	3.	2
Control	1.54	28.95	3.	2

Merlot 2018

Treatment	Berry weight (g)	Cluster #	Tons per acre
2 Leaf removal	1.39	29.68	2.94
4 Leaf removal	1.31	25.8	2.46
6 Leaf removal	1.29	25.5	2.16
Crew	1.41	25.83	2.64
Mechanical	1.32	27.1	2.52
Control	1.42	27.6	2.70

UNIVERSITY OF GEORGIA EXTENSION

NC STATE

UNIVERSITY

Chardonnay 2018

Treatment	Brix	рН	TA (g/L)
2 Leaf removal	18.66	3.676	4.608
4 Leaf removal	18.8	3.694	4.562
6 Leaf removal	18.84	3.682	4.476
Crew leaf removal	19.16	3.712	4.414
Mechanical	18.58	3.71	4.486
Control	18.78	3.662	4.826
Merlot 2018			

Treatment	Brix	рН	TA (g/L)
2 Leaf removal	17.46	3.622	4.138
4 Leaf removal	18.56	3.722	3.788
6 Leaf removal	18.62	3.766	3.634
Crew leaf removal	18.2	3.734	3.722
Mechanical	18.02	3.736	3.824
Control	18.02	3.586	4.154

Treatment	Disease Severity (%)	Disease Incidence (%)
Mechanical	0.688	21.2
Control	2.94	36
4 leaf removal	0.538	18.8
6 leaf removal	1.108	21.6

NC STATE UNIVERSITY

A leafpuller can be operated for 8 to 10 hours per day before it needs to be cleaned.

It is 15 to 20 times faster than manual leaf pulling.

A mechanical leaf puller can save costs and increase the efficacy of vineyard canopy management

NC STATE UNIVERSITY

Hypothesis, revisited

Automated leaf removal will result in similar berry composition, disease incidence and yield as hand leaf removal

- Berry composition: yes
- Disease incidence: yes
- Yield? 2019 results

Leaf Removal

Actual research data

UNIVERSITY OF GEORGIA EXTENSION

NC STATE UNIVERSITY

Thank you

- Burnshirt Vineyards
- Eric Case (Vineyard Manager)
- Karen Blaedow (NC Coop. Ext.)
- Xiaonan Shi (NC State)
- Tekan Rana (NC State)
- Emma Volk (NC State)
- Cain Hickey (UGA)

Factors affecting ripening in North Carolina:

Diseases

Actual research data

Ca. 70 different Grape Viruses are identified Ca. 25 associated diseases

Virus	Name
GLRaV 1-10	Grapevine leafroll associated virus 1-10
GRBaV	Grapevine red blotch associated virus
GVA-F	Grapevine virus A-F
GFkV	Grapevine fleck virus
GFLV	Grapevine fanleaf virus
GRSPaV	Grapevine ringspot associated virus
Many many more	Besides viruses, we test for the presence of Xf (Pierces Disease) and plasmodium.

Most grapevine viruses are single stranded RNA viruses

Common	Name
GLRaV-2	Grapevine leafroll associated virus 2
GLRaV-3	Grapevine leafroll associated virus 3
GLRaV-4	Grapevine leafroll associated virus 4
GLRaV-7	Grapevine leafroll associated virus 7
GRBaV	Grape Red Blotch associated virus
GV A	Grapevine Virus A
GV B	Grapevine Virus B

Grape Leafroll associated Virus (GLRaV)

Grape Leafroll associated Virus (GLRaV)

- Transmitted via Mealybugs
- Please contact Hannah Burrack

hannah burrack@ncsu.edu

NC STATE UNIVERSITY

Grape Leafroll associated Virus (GLRaV)

Vinifera vineyard survey:

Nine symptomatic blocks in vineyards in the **Upper Hiwassee Highlands AVA**, **Yadkin Valley AVA** and **Henderson Co.** were surveyed in October 2018 (10 random plants per block). Given is the percentage of plants positively tested for the presence of virus.

GLRaV-2	GLRaV-3	GLRaV-4	GLRaV-7	GRBV	GVA	GVB	GRSPaV	TMSV	X.f.
1%*	22 %	0 %	0 %	23 %	0 %	0 %	72 %	0 %	7 %

Grapevine Leafroll associated Virus – 3: 22% Grape Red Blotch Virus: 23%

NC STATE UNIVERSITY

Grape Leafroll associated Virus (GLRaV)

GLRaV-3

NC STATE UNIVERSITY

Grape Leafroll associated Virus (GLRaV)

GLRaV-3

Variable	Treatment means by season ^y					
	2009		2010		2011	
	Non-symptomatic	Symptomatic	Non-symptomatic	Symptomatic	Non-symptomatic	Symptomatic
Yield (kg/vine) ^α	4.70	3.39	4.19	3.52	5.68	4.51
Bunch/vine (n) ^α	90* ^{,a}	76* ^{,b}	86* ^{,a}	70* ^{,b}	116* ^{,a}	99* ^{,b}
Pruning weight (g/vine) ^α	NA	NA	315.0	279.6	359.3	272.0
TSS (Brix) ^β	24.8 ^{*,a}	23.3* ^{,b}	25.0* ^{,a}	23.1 ^{*,b}	23.5 ^{*,a}	22.5 ^{*,b}
Titratable acidity (g/L) ^β	5.47* ^{,b}	6.10* ^{,a}	6.40 ^{*,b}	6.76* ^{,a}	4.35 ^{*,b}	4.69* ^{,a}
pH ^β	3.65* ^{,a}	3.58 ^{*,b}	3.34* ^{,a}	3.33 ^{*,b}	3.65 ^{*,a}	3.55 ^{*,b}

^aData represents means of raw data from 12 pairs of non-symptomatic (uninfected) and symptomatic (GLD-affected) vines for 2009 and 2010 seasons and eight pairs of vines for the 2011 season due to new infections of four non-symptomatic vines as determined by RT-PCR. ^βData represents means of raw data from fruit triplicates taken from fruit lots from non-symptomatic and symptomatic vines at commercial harvest. ^γMeans followed by an asterisk (*) differ statistically ($p \le 0.05$) and alphabetical letters were used to separate means for each significant treatment effect comparison. Significant season effects ($p \le 0.05$) were obtained for all variables except yield and pruning wood weight but no significant 'Treatment × Season' effects were found in all cases. NA, data not taken.

doi:10.1371/journal.pone.0149666.t001

NC STATE UNIVERSITY

Grape Leafroll associated Virus (GLRaV)

GLRaV-3

Factors that impact the ripening process and berry composition in wine grapes in NC

TAKE HOME

Management tactics and diseases affect fruit composition

→ Staying on top of canopy management and disease control wins half the battle in North Carolina!

Harvest decisions in the Southeast are complex: Diseases (especially bunch rots) may still get in your way

→ You can't change the weather! Watch closely and harvest before it's too late.

A well thought through fruit sampling scheme will help you to identify harvest windows.

→ Also here: You can't change the weather! Sometimes in NC everything is on top of each other.

Take home four

Thank you!

Thank you for your attention

NCSU Department of Horticultural Science 2721 Founders Drive (Kilgore Hall), Room 258 Raleigh, 27695 NC

cell (919) 352 8006 Email: <u>mark.hoffmann@ncsu.edu</u> <u>https://smallfruits.cals.ncsu.edu</u>

