# **Grape Harvest in the Southeast: Complex Decision Making**

# NC STATE UNIVERSITY



Mark Hoffmann NC State University mark.hoffmann@ncsu.edu (919) 352-8006

Salinas, CA 13.2 Inches/year Average temperatures between 50-70 F





Salinas, CA 13.2 Inches/year Average temperatures between 50-70 F

# NC STATE UNIVERSITY



Winston-Salem, NC 45 Inches/year Average temperatures between 45-77 F





Winston-Salem, NC 45 Inches/year Average temperatures between 45-77 F

# NC STATE UNIVERSITY



# Leading to harvest: What could be different???

# NC STATE UNIVERSITY

#### Monterey Co.



#### Yadkin Valley



Leading to harvest: What could be different???



Monterey Co.

Yadkin Valley

- Low disease pressure
- Water can be regulated
- Rarely bunch rots
- In a normal year, grapes can be harvested based on chemistry
- Chemistry can be manipulated by water usage

- High disease pressure
  - Too much water
    - Rots!
- Grapes need to be harvested on complex decisions
  - Spring frosts and freezes

### Let's talk this through

# NC STATE UNIVERSITY

# What time of the season do harvest decisions start?



Pool, 2000. Cornell Univ.

### **Dormant Pruning: Assess damaged buds**





Intact bud



First cut

### **Pruning: Assess damaged buds**





Second cut

Buds are defined



Third cut

Primary bud!

Pool, 2000. Cornell Univ.

### **Dormant Pruning: Assess damaged buds**

# NC STATE UNIVERSITY



Fourth cut

Secondary and tertiary bud



Fifth cut

Too deep if done alone

Pool, 2000. Cornell Univ.

### What's up with this one?

# NC STATE UNIVERSITY



### **Recommendations**



| % dead primary buds | What to do                                                              |
|---------------------|-------------------------------------------------------------------------|
| 0-15%               | Just prune normally                                                     |
| 15-80%              | Increase number of buds retained in those areas which show a lot damage |
| More than 80%       | Minimal pruning. Come back later and regulate vegetative growth.        |

# **Take Home Message**



### Dormant-Pruning is the first harvest decision of the season

- Retain undamaged primary buds
- Retain healthy wood
- Don't leave dead wood in the vineyard!

What's next?

**Disease Control** 



When does disease control start?

**DORMANCY** 



**POST-HARVEST** 



What are the disease control tools?

- SANITATION
- CULTURAL
- CHEMICAL





# **Anthracnose (Birds-Eye)**

Elsinoe ampelina

- Overwinters on infected canes
- Germinates in spring





### **Black Rot**

Guignardia bidwellii

Overwinters on stem cankers, on old clusters still in the vineyard and mummified berries on the soil





### **Phomopsis**

Phomopsis viticola

- Overwinters on canes, wood and mummified fruit
- Cool spring time weather: spores are released





# Ripe Rot

Colletotrichum gloeosporoides Colletotrichum acutatum Glomerela cingulata

- Overwinters on canes, wood and mummified fruit
- Summer infection
- Inactive until fruit are ripe!!!





### **Bitter Rot**

Greeneria uvicola

- Overwinters on canes, plant debris and mummified fruit
- Spring: infection!!
- Pathogen latent until mature fruit





### **Bitter Rot**

Management

- Weed Control
- Pruning: dead spurs and canes
- Air circulation/leaf pulling/shoot thinning
- Chemical: Early sprays to reduce infection
- Chemical: Protect fruit from bloom to harvest!
- Chemical: late season sprays are important

# NC STATE UNIVERSITY

# **Gray Mold**

Botrytis cinerea

- Overwinters on canes, plant debris and mummified fruit on soil
- Leaf infections: before bloom
- Best infection temp: 59-68F, moist conditions





# **Gray Mold**

Management

- Sanitation
- Good canopy management, air circulation (likes moist conditions)
- Cluster thinning!!! Especially with thin skinned, tight clusters.
- Chemical: most important: veraison -> harvest



# **Gray Mold**

Management

- Sanitation
- Good canopy management, air circulation (likes moist conditions)
- Cluster thinning!!! Especially with thin skinned, tight clusters.
- Chemical: most important: veraison -> harvest

# **Botrytis Fungicide Resistance**







| Resistance | Which compound?      | Which Fungicides don't work?                                          |
|------------|----------------------|-----------------------------------------------------------------------|
| Single     | FRAC 7               | Endura, Luna Exp., Pristine                                           |
| Single     | FRAC 17              | Elevate                                                               |
| Double     | FRAC 7 + 17          | All of the above: Endura, Luna Exp. Pristine, Elevate                 |
| Double     | FRAC 12 + 9          | Switch, Vangard, Scala, Inspire Super                                 |
| Triple     | FRAC 12 + 9 + 17     | Switch, Vangard, Scala, Inspire Super,<br>Elevate                     |
| Triple     | FRAC 12 + 9 + 7      | Switch, Vangard, Scala, Inspire Super,<br>Endura, Luna Exp., Pristine |
| 'superbug' | FRAC 12 + 9 + 7 + 17 | ALL of the ABOVE                                                      |

# **Botrytis Fungicide Resistance**







| Stage                                       | FRAC 7                                       | FRAC 17                                    | FRAC 7+17                                | FRAC 12+9                              | superbug |  |  |
|---------------------------------------------|----------------------------------------------|--------------------------------------------|------------------------------------------|----------------------------------------|----------|--|--|
| <b>Bud Break</b>                            | Mancozeb + sulfur / Captan + sulfur / Copper |                                            |                                          |                                        |          |  |  |
| Pre Bloom                                   | Mancozeb + sulfur                            |                                            |                                          |                                        |          |  |  |
| Bloom                                       | Scala<br>(FRAC 9)                            | Scala<br>(FRAC 9)                          | Scala<br>(FRAC 9)                        | Pristine<br>(FRAC 7)                   | Captan   |  |  |
| 1 <sup>st</sup> /2 <sup>nd</sup> cover etc. | Mancozeb + sulfur / Downy mildew control     |                                            |                                          |                                        |          |  |  |
| Bunch closure                               | Elevate<br>(FRAC 17)                         | Pristine<br>(FRAC 7)                       | Captan or FRAC 11                        | Elevate<br>(FRAC 17)                   | Captan   |  |  |
|                                             |                                              | ,                                          |                                          | (* * * * * * * * * * * * * * * * * * * |          |  |  |
| 4 <sup>th</sup> cover                       | Ca <sub>l</sub>                              | ptan + sulfur / F                          | Phosphite (Dow                           | ,                                      |          |  |  |
| 4 <sup>th</sup> cover<br>Veraison           | Cap<br>Switch<br>(FRAC 12+9)                 | ptan + sulfur / F<br>Switch<br>(FRAC 12+9) | Phosphite (Dow<br>Inspire<br>Super (9+3) | ,                                      | Captan   |  |  |

# **Botrytis Fungicide Resistance**







- Monitor resistance can help to avoid crop losses
- Avoid using fungicides that are ineffective

Get your samples tested:

www.peachdoc.com
'Fungicide Resistance Profiling'

# We kept the best to the end



### **Sour Rot**

Injury, Fungi, Yeasts, Insects

- Complex interactions
- You need all four components to have sour rot
- Thigh clusters, thin skins



# We kept the best to the end



### **Sour Rot**

Management

- Insect control!
- Start early: at Brix 11 or 12.
- Control mostly fruit flies
- Rotate IRAC codes



# We kept the best to the end



### **Sour Rot**

Management

### Rotate e.g.:

- Delegate
- Oxidate
- MustangMaxx
- Venom

# **Defoliating will affect harvest**



Downy Mildew Pierces Disease Trunk Diseases

### **Decisions?**





### **Close to harvest:**

# NC STATE UNIVERSITY





### Take home



# Every decision in a vineyard is a harvest decision

### **Grape Forum**



#### https://grapes.ces.ncsu.edu



### **Grape Forum**



#### https://grapes.ces.ncsu.edu



# Thank you!



# Thank you for you attention

NCSU
Department of Horticultural Science
2721 Founders Drive (Kilgore Hall), Room 258
Raleigh, 27695 NC

cell (919) 352 8006

Email: mark.hoffmann@ncsu.edu https://smallfruits.cals.ncsu.edu

